*[1]	H. Abelson and A.A. diSessa. Turtle geometry. M.I.T. Press, Cambridge, 1982.

[2]	M. Aono and T.L. Kunii. Botanical tree image generation. IEEE Computer Graphics and Applications, 4(5):10-34, 1984.

[3]	M.J. Apter.  Cybernetics and development.  Pergamon Press, Oxford, 1966. (International Series of Monographs in Pure and Applied Biology/Zoology Division Vol. 29).

[4]	W.W. Armstrong. The dynamics of tree linkages with a fixed root link and limited range of rotation. Acres du Colloque Internationale l'Imaginaire Numerique '86, pages 16-21, 1986.

[5]	J.W. Backus. The syntax and seroantics of the proposed international algebraic language of the Zurich ACM-GAMM conference. In Proc. Intl. Conf. on Information Processing, pages. 125-132. UNESCO, 1959.

[6]	B.I. Balinsky. An introduction to embryology. W.B. Saunders, Philadelphia, 1970.

[7]	M.F. Barnsley. Fractals everywhere. Academic Press, San Diego, 1988.

[8]	M.F. Barnsley, J.H. Elton, and D.P. Hardin. Recurrent iterated function systems. Constructive Approximation, 5:3-31, 1989.

[9]	B.A. Barsky. The Beta-spline: A local representation based on shape parameters and fundamental geometric measures. PhD thesis, Department of Computer Science, University of Utah, 1981.

[10]	R. Bartels, J. Beatty, and B. B&rsky, editors. An introduction to splines for use in computer graphics and geometric modeling. Morgan K&ufman, Los Altos, California, 1987.

[11]	J. Bloomenthal.  Modeling the mighty maple.  Proceedings of SIGGRAPH '85 (San Francisco, California, July 22-26, 1985) in Computer Graphics, 19, 3 (July 1985), pages 305-311, ACM SIGGRAPH, New York, 1985.
[12]	B.G. Briggs and L.A.S. Johnson. Evolution in the Myrtaceae evidence from inflorescence structure, Appendix I: The relevance of Troll's system of inflorescence typology. In Proceedings of the Limeart Society of New South Wales, volume 102, pages 236-240, 1979.

*[13]	N. Chomsky. Three models for the description of language. IRE Trans. on Information Theory, 2(3):113-124, 1956.

[14]	V. Claus, H. Ehrig, and G. Rozenberg, editors. Graph grammars and their application to computer science; First International Workshop.  Lecture Notes in Computer Science 73. SpringerVetlag, Berlin, 1979.

[15]	D. Cohen. Computer simulation of biological pattern generation processes. Nature, 216:246-248, 1967.

[16]	E. Costes. Analyse architecturale et modelisation du litchi. PhD thesis, Universire des Sciences et Techniques du Languedoc, 1988.
.

[17]	H.S. 1~. Coxeter. Introduction to geometry. J. Wiley &; Sons, New York, 1961.

[18]	H.S.M. Coxeter. The role of intermediate convergents in Tait's explanation for phyllotaxis. J. Algebra, 20:167-175, 1972.

[19]	K. Culik II and D. Wood. A mathematical investigation of propagating graph OL-systems. Information and Control, 43:50-82, 1979.

[20]	P. Dabadie, P. de Reffye, and P. Dinouard. Modelisation de la croissance et de l'architecture d'un bambou. In Deuxieme congres international du bambou, 1988.

*[21]	C. Davis and D.E. Knuth. Number representations and dragon curves. J. of Recreational Mathematics, 3:66-81, 133-149, 1970.

[22]	M.J.M. de Boer. Analysis and computer generation of division patterns in cell layers using developmental algorithms. PhD thesis, University of Utrecht, the Netherlands, 1989.

[23]	M.J.M. de Boer and A. Lindenmayer. Map OL-systems with edge label control: Comparison of marker and cyclic systems. In H. Ehrig, M. Nagl, A. Rosenfeld, and G. Rozenberg, editors, Graph-grammars and their application to computer science, Lecture Notes in Computer Science 291, pages 378-392. SpringerVerlag, 1987.
[24] M. de Does and A. Lindenmayer.  Algorithms for the generation and drawing of maps representing cell clones. In H. Ehrig, M. Nagl, and G. Rozenberg, editors, Graph-grammars and their application to computer science, Lecture Notes in Computer Science 153, pages 39--57. Springer-Verlag, 1983.
[25] C.G. de Koster and A. Lindenmayer. Discrete and continuous models for heterocyst differentiation in growing filaments of bluegreen bacteria. In Acta Biotheoretica, volume 36, pages 249-273. Kluwer Academic, the Netherlands, 1987. 
[26] P. de Reffye. Modele mathematique aleatorie et simulation de la croissance et de l'architecture du cafeier robusta. Premiere partie, Care-Cacao-The, 25(2):83-104, 1981. Deuxieme partie, Care-Cacao-The, 25(4):219-230, 1981. Troisieme partie, CareCacao-The, 26(2):77-96, 1982. Quatrieme partie, Care-Cacao-The, 27(1):3-20, 1983.

[27]	P. de Reffye. Travaux 8ur la carejer. CIRAD, Montpellier. Collection of earlier papers.

[28]	P. de Reffye. Modeligation et simulation de la verge de cafeier, a l'aide de la theorie de la resistance des materiaux. Care-CacaoThe, XX(4):251-272, 1976.

[29]	P. de Reffye, M. Cognee, M. Jaeger, and B. Traore. Modelisation de la croissance et de l'architecture du cotonnier. Manuscript, 1988.

[30]	P. de Reffye, C. Edilin, J. Frančon, M. Jaeger, and C. Puech. Plant models faithful to botanical structure and development. Proceedings of SIGGRAPH '88 (Atlanta, Georgia, August 1-5, 1988), in Computer Graphics 22,4 (August 1988), pages 151-158, ACM SIGGRAPH, New York, 1988.

*[31]	F.M. Dekking.  Recurrent sets.  Advances in Mathematics, 44(1):78-104, 1982.

*[32]	F.M. Dekking.  Recurrent sets: A fractal formalism.  Report 82-32, Delft University of Technology, 1982.

[33]	H. Ehrig, M. Nagl, A. Rosenfeld, and G. Rozenberg, editors. Graph grammars and their application to computer science; Third International Workshop. Lecture Notes in Computer Science 291. Springer-Verlag, Berlin, 1987.

[34]	H. Ehrig, M. Nagl, and G. Rozenberg, editors. Graph grammars and their application to computer science; Second International Workshop.  Lecture Notes in Computer Science 153. SpringerVerlag, Berlin, 1983.
[35]	P. Eichhorst and W.J. Savitch. Growth functions of stochastic Lindenmayer systems. Information and Control, 45:217-228, 1980.

[36]	R.O. Erickson. The geometry of phyllotaxis. In J.E. Dale and F.L. Milthrope, editors, The growth and functioning of leaves, pages 53-88. University Press, Cambridge, 1983.

[37]	G. Eyrolles.  Synthese d'images figuratives d'arbres par des methodes combinatoires.  PhD thesis, Universite de Bordeaux I, 1986.

[38]	J.B. Fisher and H. Honda. Computer simulation of branching pattern and geometry in Terminalia (Combretaceae), a tropical tree. Botanical Gazette, 138(4):377-384, 1977.

[39]	J.B. Fisher and H. Honda. Branch geometry and effective leaf area: A study of Termi'nalia-branching pattern, Parts I and II. American Journal of Botany, 66:633-655, 1979.

[40]	J.D. Foley and A. Van Dam. Fundamentals of interactive computer graphics. Addison-Wesley, Reading, Massachusetts, 1982.

[41]	L. Fox and D.F. Mayers. Numerical solution of ordinary differential equations. Chapman and Hall, London, 1987.

[42]	F.D. Fracchia, P. Prusinkiewicz, and M.J.M. de Boer. Visualization of the development of multicellular structures. In Proceedings of Graphics Interface "90, pages 267-277, 1990.

*[43]	H. Freeman.  On encoding arbitrary geometric configurations. IRE Trans. Electronic. Computers, 10:260-268, 1961.

[44]	D. Frijters. Mechanisms of developmental integration of Aster novae-angliae L. and Hieracium murorum L. Annals of Botany, 42:561-575, 1978.

[45]	D. Frijters. Principles of simulation of inflorescence development. Annals of Botany, 42:549-560, 1978.

*[46]	D. Frijters and A. Lindenmayer. A model for the growth and flowering of Aster novae-angliae on the basis of table (l,O)Lsystems. In G. Rozenberg and A. Salomaa, editors, L Systems, Lecture Notes in Computer Science 15, pages 24-52. SpringerVerlag, Berlin, 1974.

[47]	D. Frijters and A. Lindenmayer. Developmental descriptions of. branching patterns with paracladial relationships. In A. Lindenmayer and G. Rozenberg, editors, Automata, languages, development, pages 57-73. North-Holland, Amsterdam, 1976.

*[48]	M. Gardner. Mathematical games: An array of problems that can be solved with elementary mathematical techniques. Scientific American, 216, 1967. 3:124-129 (March), 4:116-123 (April).

[49]	M. Gardner. Mathematical games: The fantastic combinations of John Conway's new solitaire game "life." Scientific American, 223(4):120-123, October 1970.

[50]	M. Gardner. Mathematical games: On cellular automata, selfreproduction, the Garden of Eden and the game "life." Scientific American, 224(2):112-117, February 1971.

*[51]	M. Gardner. Mathematical games - in which "monster" curves force redefinition of the word "curve."  Scientific American, 235(6):124-134, December 1976.

[52]	S. Ginsburg and H.G. Rice. Two families of languages related to ALGOL. J. ACM, 9(3):350-371, 1962.

[53] H. Gravelius. Flusskunde. Goschen, Berlin, 1914.

[54]	N. Greene.  Voxel space automata: Modeling with stochastic growth processes in voxel space. Proceedings of SIGGRAPH '89 (Boston, Mass., July 31-August 4, 1989), in Computer Graphics 23,4 (August 1989), pages 175-184, ACM SIGGRAPH, New York, 1989.

[55]	B.E.S. Gunning.  Microtubules and cytomorphogenesis in a developing organ: The root primordium of Azolla pinnata. In O. Kiermayer, editor, Cytomorphogenesis in plants, Cell Biology Monographs 8, pages 301-325. Springer-Verlag, Wien, 1981.

*[56]	A. Habel and H.-J. Kreowski. On context-free graph languages generated by edge replacement.  In H. Ehrig, M. Nagl, and G. Rozenberg, editors, Graph grammars and their application to computer science; Second International Workshop, Lecture Notes in Computer Science 153, pages 143-158. Springer-Verlag, Berlin, 1983.

*[57]	A. Habel and H.-J. Kreowski. May we introduce to you: Hyperedge replacement. In H. Ehrig, M. Nagl, G. Rozenberg, and A. Posenfeld, editors, Graph grammars and their application to computer science; Third International Workshop, Lecture Notes in Computer Science 291, pages 15-26. Springer-Verlag, Berlin, 1987.

[58]	F. Halle, R.A.A. Oldeman, and P.B. Tomlinson. Tropical trees and forests: An architectural analysis. Springer-Verlag, Berlin, 1978.
[59]	P.H. Hellendoorn and A. Lindenmayer. Phyllotaxis in Bryophyllure tubiflorum: Morphogenetic studies and computer simulations. Acta Biol. Neerl, 23(4):473-492, 1974.

[60]	D. Hepting, P. Prusinkiewicz, and D. Saupe. Rendering methods for iterated function systems. Manuscript, 1990.

[61]	G. Herman, A. Lindenmayer, and G. Rozenberg. Description o/ developmental languages using recurrence systems. Mathematicai Systems Theory, 8:316-341, 1975.

*[62]	G.T. Herman and G. Rozenberg. Developmental systems and languages. North-Holland, Amsterdam, 1975.

[63]	D. Hilbert.   Ueber stetige Abbildung einer Linie auf ein Flachenstuck. Mathematische Annalin., 38:459-460, 1891.

*[64]	P. Hogeweg and B. Hesper. A model study on biomorphological description. Pattern Recognition, 6:165-179, 1974.

[65]	H. Honda. Description of the form of trees by the parameters of the tree-like body: Effects of the branching angle and the branch length on the shape of the tree-like body. Journal of Theoretical Biology, 31:331-338, 1971.

[66]	H. Honda and J.B. Fisher. Tree branch angle: Maximizing effective leaf area. Science, 199:888-890, 1978.


[67]	H. Honda and J.B. Fisher. Ratio of tree branch lengths: The equitable distribution of leaf clusters on branches. Proceedings of the National Academy of Sciences USA, 76(8):3875-3879, 1979.

[68]	H. Honda, P.B. Tomlinson, and J.B. Fisher. Computer simulation of branch interaction and regulation by unequal flow rates in botanical trees. American Journal of Botany, 68:569-585, 1981.'

[69]	H. Honda, P.B. Tomlinson, and J.B. Fisher. Two geometrical models of branching of botanical trees. Annals of Botany, 49:1.11, 1982.

[70]	R.E. Horton.  Erosioned development of systems and their drainage basins, hydrophysical approach to quantitative morphology. Bull. Geol. Soc. America, 56:275-370, 1945.

[71]	R.E. Horton. Hypsometric (area-altitude) analysis of erosional topology. Bull. Geol. Soc. America, 63:1117-1142, 1952.

[72]	R. Hunt. Plant growth analysis. Studies in Biology 96. Edward Arnold, London, 1978.

[73]	R. Hunt. Plant growth curves - the functional approach to plant growth analysis. Edward Arnold, London, 1982.

[74]	J.E. Hutchinson. Fractals and self-similarity. Indiana University Journal of Mathematics, 30(5):713-747, 1981.

[75]	G. Van Iterson.  Mathematische und mikroskopish-anatomische Studien iiber Blattstellungen. Gustav Fischer, Jena, 1907.

[76]	M. Jaeger.   Representation et simulation de croissance des vegetaux. PhD thesis, Universite Louis Pasteur de Strasbourg, 1987.

[77]	J.M. Janssen and A. Lindenmayer. Models for the control of branch positions and flowering sequences of capitula in Mycelis muralis (L.) Dumont (Compositae). New Phytologist, 105:191220, 1987.                    ,

[78]	R.V. Jean. Mathematical modelling in phyllotaxis: The state of the art. Mathematical Biosciences, 64:1-27, 1983.

*[79]	H. Jurgensen and A. Lindenmayer. Modelling development by OL-systems:  Inference algorithms for developmental systems with cell lineages. Bulletin of Mathematical Biology, 49(1):93123, 1987.

[80]	A.N. Kolmogorov. Three approaches to the quantitative definition of information. Int. J. Comp. Math, 2:157-168, 1968.

[81]	H.' Lieherman. Using prototypical objects to implement shared behavior in object oriented systems.   In Proceedings of the ACM Conference on Object-Oriented Programming Systems, Languages, and Applications, pages 214-223, New York, 1986. Association for Computing Machinery.

[82]	A. Lindenmayer. Mathematical models for cellular interaction in development, Parts I and II. Journal of Theoretical Biology,' 18:280-315,. 1968.

[83]	A. Lindenmayer. Adding continuous components to L-systems. In G. Rozenberg and A. Salomaa, editors, L Systems, Lecture Notes in Computer Science 15, pages 53-68. Springer'Verlag, Berlin, 1974.

*[84]	A. Lindenmayer. Developmental algorithms: Lineage versus interactive control mechanisms. In S. Subtelny and P.B. Green, editors, Developmental oder: Its origin and regulation, pages 219-245. Alan R. Liss, New York, 1982.

[85]	A. Lindenmayer. Models for plant tissue development with cell division orientation regulated by preprophase bands of microtubules. Differentiation, 26:1-10, 1984.

[86]	A. Lindenmayer. Positional and temporal control mechanisms in inflorescence development. In P.W. Barlow and D.J. Carr, editors, Positional controls in plant development. University Press, Cambridge, 1984.

*[87]	A. Lindenmayer. An introduction to parallel map generating systems. In H. Ehrig, M. Nagl, A. Rosenfeld, and G. Rozenberg, editors, Graph grammars and their application to computer science; Third International Workshop, Lecture Notes in Computer Science 291, pages 27-40. Springer-Verlag, Berlin, 1987.

*[88]	A. Lindenmayer. Models for multicellular development: Characterization, inference and complexity of L-systems. In A. KelmenovO and J. Kelmen, editors, Trends, techniques and problems in theoretical computer science, Lecture Notes in Computer Science 281, pages 138-168. Springer-Verlag, Berlin, 1987.

*[89]	A. Lindenmayer and P. Prusinkiewicz.  Developmental models of multicellular organisms: A computer graphics perspective. In C. Langton, editor, Artificial Life: Proceedings of an Interdisciplinary Workshop on the Synthesis and Simulation of Living Systems held September, 198% in Los Alamos, New Mexico, pages 221-249. Addison-Wesley,. Redwood City, 1989.

[90]	A. Lindenmayer and G. Rozenberg, editors. Automata, languages, development. North-Holland, Amsterdam, 1976.

[91]	A. Lindenmayer and G. Rozenberg. Parallel generation of maps: Developmental systems for cell layers. In V. Claus, H. Ehrig, and G. Rozenberg, editors, Graph grammars and their application to computer science; First International Workshop, Lecture Notes in Computer Science 73, pages 301-316. Springer-Verlag, Berlin, 1979.

[92]	J. Luck, A. Lindenmayer, and H.B. Luck.  Models for cell tetrads and clones in meristematic cell layers. Botanical Gazette, 149:1127-141, 1988.

[93]	J. Luck and H.B. Luck. Generation of 3-dimensional plant bodies by double wall map and stereomap systems.  In H. Ehrig, M. Nagl, and G. Rozenberg, editors, Graph Grammars and Their Application to Computer Science; Second International Workshop, Lecture Notes in Computer Science 153, pages 219-231. Springer-Verlag, Berlin, 1983.
[94]	N. Macdonald. Trees and networks in biological models. J. Wiley &: Sons, New York, 1983.

*[95]	B.B. Mandelbrot. The fractal geometry of nature. W.H. Freeman, San Francisco, 1982.

*[96]	D.M. McKenna.  SquaRecurves, E-tours, eddies and frenzies: Basic families of Peano curves on the square grid. In Proceedings of the Eugene Sirens Memorial Conference on Recreational Mathematics and its History, 1989. To appear.

[97]	H. Meinhardt. Models of biological pattern formation. Academic Press, New York, 1982.

[98]	L. Mercer, P. Prusinkiewicz, and J. Hanan. The concept and design of a virtual laboratory. In Proceedings of Graphics Interface '90, pages 149-155. CIPS, 1990.

[99]	G.J. Mitchison and Michael Wilcox. Rules governing cell division in Anabaena. Nature, 239:110-111, 1972.

[100]	D. Muller-Doblies and U. Muller-Doblies. Cautious improvement of a descriptive terminology of inflorescences. Monocot Newsletter 4, 1987.

[101]	F.K. Musgrave, C.E. Kolb, and R.S. Mace.  The synthesis and rendering of eroded fractal terrains.  Proceedings of SIGGRAPH '89 (Boston, Mass., July'31-August 4, 1989), in Computer Graphics 23,4 (August 1989), pages 41-50, ACM SIGGRAPH, New York, 1989.

[102]	A. Nakamura, A. Lindenmayer, and K. Aizawa. Some systems for map generation. In G. Rozenberg and A. Salomaa, editors, The Book of L, pages 323-332. Springer-Verlag, Berlin, 1986.

[103]	P. Naur et al. Report on the algorithmic language ALGOL 60. Communications of the ACM, 3(5):299-314, 1960.  Revised in Comm. ACM 6(1):1-17.

[104]	T. Nelson. Computer lib and dream machines. Self-published, 1980.

[105]	P. Oppenheimer. Real time design and animation of fractal plants and trees. Computer Graphics, 20(4):55-64, 1986.

*[106]	G. Peano. Sur une courbe, qui remplit tout une aire plaine. Math. Annln., 36:157-160, 1890. Translated in G. Peano, Selected works of Giuseppe Peano, H.C. Kennedy, editor, pages 143-149, University of Toronto Press, Toronto, 1973.

[107]	H. Peitgen and D. Saupe, editors. The science offracial images. Springer-Verlag, New York, 1988.

[108]	F.P. Preparata and R.T. Yeh. Introduction to Discrete Structures. Addison-Wesley, Reading, Massachusetts, 1973.

*[109]	P. Prusinkiewicz. Graphical applications of L-systems. In Proceedings of Graphics Interface '86 -- Vision Interface '86, pages 247-253. CIPS, 1986.

*[110]	P. Prusinkiewicz. Score generation with L-systems. In Proceedings of the International Computer Music Conference '86, pages 455457, 1986.

*[111]	P. Prusinkiewicz. Applications of L-systems to computer imagery. In H. Ehrig, M. Nagl, A. Rosenfeld, and G. Rozenberg, editors, Graph grammars and their application to computer science; Third International Workshop, pages 534-548. Springer-Verlag, Berlin, 1987. Lecture Notes in Computer Science 291.

*[112]	P. Prusinkiewicz and J. Hanan.  Lindenmayer systems, fractals, and plants, volume 79 of Lecture Notes in Biomathematics. Springer-Verlag, Berlin, 1989.

[113]	P. Prusinkiewicz and J. Hanan. Visualization of botanical structures and processes using parametric L-systems. In D. Thaimann, editor, Scientific Visualization and Graphics Simulation, pages 183-201. J. Wiley & Sons, 1990.

[114]	P. Prusinkiewicz and K. Krithivasan. Algorithmic generation of South Indian folk art patterns. In Proceedings of the International Conference on Computer Graphics ICONCG '88, Singapore, 1988.

*[115]	P. Prusinkiewicz, K. Krithivasan, and M.G. Vijay&narayana. 'Application of L-systems to algorithmic generation of South Indian folk art patterns and karnatic music. In R. Narasimhan, editor, A perspective in theoretical computer science -- commemorative volume for Gift Siromoney, pages 229-247. World Scientific, Singapore, 1989. Series in Computer Science Vol. 16.

*[116]	P. Prusinkiewicz, A. Lindenmayer, and F.D. Pracchia. Synthesis of space-filling curves on the square grid. To appear in Proceedings of FRACTAL '90, the Ist IFIP conference on fractals, Lisbon, Portugal, June 6-8, 1990.

*[117]	P. Prusinkiewicz, A. Lindenmayer, and J. Hanan. Developmental models of herbaceous plants for computer imagery purposes. Proceedings of SIGGRAPH '88 (Atlanta, Georgia, August 1-5, 1988), in Computer Graphics 22,4 (August 1988), pages 141-150, ACM SIGGRAPH, New York, 1988.

[118]	P. Prusinkiewicz and G. Sandness. Koch curves as attractors and repellers. IEEE Computer Graphics and Applications, 8(6):26-40, 1988.

[119]	W.T. Reeves and R. Blau. Approximate and probabilistic algorithms for shading and rendering structured particle systems. Proceedings of SIGGRAPH '85 (San Francisco, California, July 22-26, 1985) in Computer Graphics, 19, 3 (July 1985), pages 313322, ACM SIGGRAPH, New York, 1985.

[120]	W.R. Remphrey, B.R. Neal, and T.A. Steeves. The morphology and growth of Arctostaphylos uva-ursi (bearberry), parts i and ii. Canadian Journal of Botany, 61(9):2430-2458, 1983.

[121]	W.R. Remphrey and G.R. Powell. Crown architecture of Larix laricina saplings: Quantitative analysis and modelling of (nonsylleptic) order 1 branching in .relation to development of the main stem. Canadian Journal of Botany, 62(9):1904-1915, 1984.

[122]	W.R. Remphrey and G.R. Powell. Crown architecture of Larix laricina saplings: Sylleptic branching on the main stem. Canadian Journal of Botany, 63(7):1296-1302, 1985.

[123]	L.H. Reuter. Rendering and magnification of fractals using interated function systems. PhD thesis, Georgia Institute of Technology, 1987.

[124]	J.N. Ridley. Computer simulation of contact pressure in capitula. Journal of Theoretical Biology, 95:1-11, 1982.

[125]	J.N. Ridley. Packing efficiency in sunflower heads. Mathematical Biosciences, 58: 129-139, 1982.

[126]	D.F. Robinson. A notation for the growth of inflorescences. New Phytologist, 103:587-596, 1986.

*[127]	G. Rozenberg and A. Salomaa.  The mathematical theory of Lsystems. Academic Press, New York, 1980.

[128] A. Salomaa. Formal languages. Academic Press, New York, 1973.

[129]	F.W. Sears, M.W. Zemansky, and H.D. Young. College physics. Addison-Wesley Publ. Co., Reading, 6th edition, 1985.

[130]	M. Shebell. Modeling branching plants using attribute L-systems. Master's thesis, Worcester Polytechnic Institute, 1986.

[131]	P.L.J. Siero, G. Rozenberg, and A. Lindenmayer. Cell division patterns: Syntactical description and implementation. Computer Graphics and Image Processing, 18:329-346, 1982.

*[132]	W. Sierpinski.  Sur une courbe dont tout point est un point de ramification. Comptes Rendus hebdomadaires des seances de l'Academie des Sciences, 160:302-305, 1915.  Reprinted in W. Sierpinski, Oeuvres choisies, S. Hartman et al., editors, pages 99-106, PWN - Editions Scientifiques de Pologne, Warsaw, 1975.

*[133]	G. Siromoney and R. Siromoney. Rosenfeld's cycle grammars and kolam. In H. Ehrig, M. Nagl, A. Rosenfeld, and G. Rozenberg, editors, Graph grammars and their application to computer science; Third International Workshop, Lecture Notes in Computer Science 291, pages 564-579. Springer-Verlag, Berlin, 1987.

*[134]	G. Siromoney, R. Siromoney, and T. Robinsin.  Kambi kolam and cycle grammars. In R. Narasimhan, editor, A perspective in theoretical computer science -- commemorative volume for Gift Siromoney, Series in Computer Science Vol. 16, pages 267-300. World Scientific, Singapore, 1989.

*[135]	R. Siromoney and K.G. Subramanian. Space-filling curves and infinite graphs. In H. Ehrig, M. Nagl, and G. Rozenberg, editors, Graph grammars and their application to computer science; Second International Workshop, Lecture Notes in Computer Science 153, pages 380-391. Springer-Verlag, Berlin, 1983.

*[136]	A.R. Smith. Plants, fractals, and formal languages. Proceedings of SIGGRAPH '84 (Minneapolis, Minnesota, July 22-27, 1984) in Computer Graphics, 1=8, 3 (July 1984), pages 1-10, ACM SIGGRAPH, New York, 1984.

*[137]	A.R. Smith. About the cover: Reconfigurable machines. Computer, 11(7):3-4, 1978.

[138]	P.S. Stevens. Patterns in nature. Little, Brown and Co., Boston, 1974.

[139]	R.J. Stevens, A.F. Lehar, and F.H. Perston. ManipulatiOn and presentation of multidimensional image data using the Peano scan..IEEE Trans. on Pattern Analysis and Machine Intelligence, PAMI-5(5):520-526, 1983.

[140]	A.L. Szilard. Growth functions of Lindenmayer systems. Technical Report 4, Computer Science Department, University of Western Ontario, 1971.

*[141]	A.L. Szilard and R.E. Quinton. An interpretation for DOL systems by computer graphics.  The Science Terrapin, 4:8-13, 1979.

[142]	R. Thom. Structural stability and morphogenesis. An outline of a general theory of models. Benjamin/Cummings, Reading, Massachusetts, 1975.

[143]	d'Arcy Thompson. On growth and form. University Press, Cambridge, 1952.

[144]	W. Troll. Die Infloreszenzen, volume I. Gustav Fischer Verlag, Stuttgart, 1964.

[145]	W. Troll. Die Infloreszenzen, volume II. Gustav Fischer Verlag, Jena, 1969.

[146]	A. Turing. On computable numbers with an application to the Entscheidungsproblem, 1936.  Proc. Lond. Math. Soc. (ser. 2), 42:230-265, 1936-37, and 43:544-546, 1937.

[147]	A. Turing. The chemical basis of morphogenesis. Philosophical Trans. Roy. Soc. B, 237(32):5-72,'1952.

[148]	W.T. Tutte.  Graph theory.  Addison-Wesley, Reading, Massachusetts, 1982.

[149]	S. Ulam. Patterns of growth of figures: Mathematical aspects. In G. Kepes, editor, Module, Proportion, Symmetry, Rhythm, pages 64-74. Braziller, New York, 1966.

[150]	J.A.M. van den Biggelaar. Development of dorsoventral polarity and mesentoblast determination in Patella vulgata. Journal of Morphology, 154:157-186, 1977:.'

[151]	A.H. Veen and A. Lindenmayer. Diffusion mechanism for phyllotaxis: Theoretical physico-chemical and computer study. Plant Physiology, 60:127-139, 1977.

[152]	X.G. Viennot, G. Eyrolles, N. Janey, and D. Arques. Combinatorial analysis of ramified patterns and computer imagery of trees. Proceedings of SIGGRAPH '89 (Boston, Mass., July 31-August 4, 1989), in Computer Graphics 23,4 (August 1989), pages 31-40, ACM SIC:GRAPH, New York, 1989.

[153]	P.M.B. Vitanyi. Development, growth and time. In G. Rozenberg and A. Salomaa, editors, The Book of L, pages 431-444. Springer-Verlag, Berlin, 1986.

[154]	H. Vogel. A better way to construct the sunflower head. Mathematical Biosciences, 44: 179-189, 1979.

*[155]	H. von Koch. Une methode geometrique elementaire pour l'etude de certaines questions de la theorie des courbes planes.  Acta mathematica, 30:145-174, 1905.

[156]	J. von Neumann. Theory of self-reproducing automata. University of Illinois Press, Urbana, 1966. Edited by A.W. Burks.

[157]	F. Weberling. Typology of infiorescences. J. Linn. Soc. (Bot.), 59(378):215-222, 1965.

[158]	F. Weberling. Morphologie der Bliiten und der Bliitenstande. Verlag Eugen Ulmer, Stuttgart, 1981.

[159]	H. Weyl. Symmetry. Princeton University Press, Princeton, New Jersey, 1982.

[160]	S. Wolfram. Computer software in science and mathematics. Scientific American, 251(3):188-203, 1984.

[161]	S. Wolfram.  Some recent results and questions about cellular automata. In 3. Demongeot, E. Goles, and M. Tchuente, editors, Dynamical systems and cellular automata, pages 153-167. Academic Press, London, 1985.

[162]	T. Yokomori. Stochastic characterizations of EOL languages. Information and Control, 45:26-33, 1980.

[163]	D.A. Young. On the diffusion theory of phyllotaxis. Journal of Theoretical Biology, 71:421-z123, 1978.

[164]	M.H. Zimmerman and C.L. Brown.  Trees -- structure and function. Springer-Verlag, Berlin, 1971.