
An Instrument Design TOOTorial

Richard Boulanger

TOOTorial Contents

Download — Toots.zip

Introduction
Toot 1: Play One Note
Toot 2: P-Fields
Toot 3: Envelopes
Toot 4: Chorusing
Toot 5: Vibrato
Toot 6: GENs
Toot 7: Crossfade

An Instrument Design TOOTorial http://www.csounds.com/toots/

1 of 40 04.11.13 16:31

Toot 8: Soundin
Toot 9: Global Stereo Reverb
Toot 10: Filtered Noise
Toot 11: Carry, Tempo & Sort
Toot 12: Tables & Labels
Toot 13: Spectral Fusion
When Things Sound Wrong
Suggestions for Further Study

Introduction

Csound instruments are created in an orchestra file, and the list of notes to play is written in a
separate score file. Both are created using a standard word processor. When you run Csound on a
specific orchestra and score, the score is sorted and ordered in time, the orchestra is translated and
loaded, the wavetables are computed and filled, and then the score is performed. The score drives
the orchestra by telling the specific instruments when and for how long to play, and what
parameters to use during the course of each note event.

Unlike today's commercial hardware synthesizers, which have a limited set of oscillators,
envelope generators, filters, and a fixed number of ways in which these can be interconnected,
Csound's power is not limited. If you want an instrument with hundreds of oscillators, envelope
generators, and filters you just type them in. More important is the freedom to interconnect the
modules, and to interrelate the parameters which control them. Like acoustic instruments, Csound
instruments can exhibit a sensitivity to the musical context, and display a level of “musical
intelligence” to which hardware synthesizers can only aspire.

Because the intent of this tutorial is to familiarize the novice with the syntax of the language,
we will design several simple instruments. You will find many instruments of the sophistication
described above in The Csound Book or by following the links at Csounds.com. A study of

An Instrument Design TOOTorial http://www.csounds.com/toots/

2 of 40 04.11.13 16:31

these will reveal Csound's real power. Still, hopefully you will find in these simple examples the
building block you require and I encourage you to modify and extend each of them and
recommend that you try to make each score more involved and more musical. Well, let's get
started!

In Csound, the orchestra file has two main parts:

the header section - defining the sample rate, control rate, and number of output channels.
the instrument section - in which the instruments are designed.

The Header Section

A Csound orchestra generates signals at two rates - an audio sample rate and a control sample rate.
Each can represent signals with frequencies no higher than half that rate, but the distinction
between audio signals and sub-audio control signals is useful since it allows slower moving
signals to require less compute time. In the header below, we have specified a sample rate of 44.1
kHz, a control rate of 4410 Hz, and then calculated the number of samples in each control period
using the formula: ksmps = sr / kr

sr = 44100
kr = 4410
ksmps = 10
nchnls = 1

In Csound orchestras and scores, spacing is arbitrary. It is important to be consistent in laying
out your files, and you can use spaces to help this. In the Tutorial Instruments shown below you
will see we have adopted one convention. The reader can choose his or her own.

The Instrument Section

All instruments are numbered and are referenced thus in the score. Csound instruments are similar
to patches on a hardware synthesizer. Each instrument consists of a set of “unit generators,” or

An Instrument Design TOOTorial http://www.csounds.com/toots/

3 of 40 04.11.13 16:31

software “modules,” which are “patched” together with “i/o” blocks — i-, k-, or a-rate variables.
Unlike a hardware module, a software module has a number of variable “arguments” which the
user sets to determine its behavior. The four types of variables are:

setup only
i-rate variables, changed at the note rate
k-rate variables, changed at the control signal rate
a-rate variables, changed at the audio signal rate

Orchestra Statements

Each statement occupies a single line and has the same basic format:

result action arguments

To include an oscillator in our orchestra, you might specify it as follows:

a1 oscil 10000, 440, 1

The three “arguments” for this oscillator set its amplitude (10000), its frequency (440Hz), and
its wave shape (1). The output is put in i/o block a1. This output symbol is significant in
prescribing the rate at which the oscillator should generate output — here the audio rate. We could
have named the result anything (e.g. asig) as long as it began with the letter “a”.

Comments

To include text in the orchestra or score which will not be interpreted by the program, precede it
with a semicolon. This allows you to fully comment your code. On each line, any text which
follows a semicolon will be ignored by the orchestra and score translators.

An Instrument Design TOOTorial http://www.csounds.com/toots/

4 of 40 04.11.13 16:31

Toot 1: Play One Note

The first orchestra file, called Toot01.orc contains a single instrument which uses an oscil unit to
play a 440Hz sine wave (defined by f1 in the score) at an amplitude of 10000.

 instr 1
a1 oscil 10000, 440, 1
 out a1
 endin

Toot01.orc

Run this with its corresponding score file, toot1.sco

f1 0 4096 10 1 ; use GEN10 to compute a sine wave

;ins strt dur
i1 0 4

e ; indicates the end of the score

Toot01.sco

Figure 1 Block diagram of instr 1.

An Instrument Design TOOTorial http://www.csounds.com/toots/

5 of 40 04.11.13 16:31

Toot 2: P-Fields

The first instrument was not interesting because it could play only one note at one amplitude level.
We can make things more interesting by allowing the pitch and amplitude to be defined by
parameters in the score. Each column in the score constitutes a parameter field, numbered from
the left. The first three parameter fields of the i statement have a reserved function:

p1 = instrument number
p2 = start time
p3 = duration

All other parameter fields are determined by the way the sound designer defines his
instrument. In the instrument below, the oscillator's amplitude argument is replaced by p4 and the
frequency argument by p5. Now we can change these values at i-time, i.e. with each note in the
score. The orchestra and score files now look like:

 instr 2
a1 oscil p4, p5, 1 ; p4=amp
 out a1 ; p5=freq
 endin

Toot02.orc

f1 0 4096 10 1 ; sine wave

;ins strt dur amp(p4) freq(p5)
i2 0 1 2000 880
i2 1.5 1 4000 440
i2 3 1 8000 220
i2 4.5 1 16000 110
i2 6 1 32000 55

e

Toot02.sco

An Instrument Design TOOTorial http://www.csounds.com/toots/

6 of 40 04.11.13 16:31

Figure 2 Block diagram of instr 2.

Toot 3: Envelopes

Although in the second instrument we could control and vary the overall amplitude from note to
note, it would be more musical if we could contour the loudness during the course of each note.
To do this we'll need to employ an additional unit generator linen, which the Csound reference
manual defines as follows:

kr linen kamp, irise, idur, idec
ar linen xamp, irise, idur, idec

linen is a signal modifier, capable of computing its output at either control or audio rates.
Since we plan to use it to modify the amplitude envelope of the oscillator, we'll choose the latter
version. Three of linen's arguments expect i-rate variables. The fourth expects in one instance a
k-rate variable (or anything slower), and in the other an x-variable (meaning a-rate or anything
slower). Our linen we will get its amp from p4.

The output of the linen (k1) is patched into the kamp argument of an oscil. This applies an
envelope to the oscil. The orchestra and score files now appear as:

 instr 3 ; p3=duration of note

An Instrument Design TOOTorial http://www.csounds.com/toots/

7 of 40 04.11.13 16:31

k1 linen p4, p6, p3, p7 ; p4=amp
a1 oscil k1, p5, 1 ; p5=freq
 out a1 ; p6=attack time
 endin ; p7=release time

toot03.orc

f1 0 4096 10 1 ; sine wave

;ins strt dur amp(p4) freq(p5) attack(p6) release(p7)
i3 0 1 10000 440 0.5 0.7
i3 1.5 1 10000 440 0.9 0.1
i3 3 1 5000 880 0.02 0.99
i3 4.5 1 5000 880 0.7 0.01
i3 6 2 20000 220 0.5 0.5

e

toot03.sco

Figure 3 Block diagram of instr 3.

An Instrument Design TOOTorial http://www.csounds.com/toots/

8 of 40 04.11.13 16:31

Toot 4: Chorusing

Next we'll animate the basic sound by mixing it with two slightly de-tuned copies of itself. We'll
employ Csound's cpspch value converter which will allow us to specify the pitches by octave and
pitch-class rather than by frequency, and we'll use the ampdb converter to specify loudness in dB
rather than linearly.

Since we are adding the outputs of three oscillators, each with the same amplitude envelope,
we'll scale the amplitude before we mix them. Both iscale and inote are arbitrary names to make
the design a bit easier to read. Each is an i-rate variable, evaluated when the instrument is
initialized.

 instr 4
iamp = ampdb(p4) ; convert decibels to linear amp
iscale = iamp * .333 ; scale the amp at initialization
inote = cpspch(p5) ; convert octave.pitch to cps

k1 linen iscale, p6, p3, p7 ; p4=amp

a3 oscil k1, inote*.996, 1 ; p5=freq
a2 oscil k1, inote*1.004, 1 ; p6=attack time
a1 oscil k1, inote, 1 ; p7=release time

a1 = a1+a2+a3
 out a1
 endin

toot04.orc

f1 0 4096 10 1 ; sine wave

;ins strt dur amp freq attack release
i4 0 1 75 8.04 0.1 0.7
i4 1 1 70 8.02 0.07 0.6
i4 2 1 75 8.00 0.05 0.5
i4 3 1 70 8.02 0.05 0.4
i4 4 1 85 8.04 0.1 0.5

An Instrument Design TOOTorial http://www.csounds.com/toots/

9 of 40 04.11.13 16:31

i4 5 1 80 8.04 0.05 0.5
i4 6 2 90 8.04 0.03 1.

toot04.sco

Figure 4 Block diagram of instr 4.

Toot 5: Vibrato

To add some delayed vibrato to our chorusing instrument we use another oscillator for the vibrato

An Instrument Design TOOTorial http://www.csounds.com/toots/

10 of 40 04.11.13 16:31

and a line segment generator, linseg, as a means of controlling the delay. linseg is a k-rate or
a-rate signal generator which traces a series of straight line segments between any number of
specified points. The Csound manual describes it as:

kr linseg ia, idur1, ib[, idur2, ic[...]]
ar linseg ia, idur1, ib[, idur2, ic[...]]

Since we intend to use this to slowly scale the amount of signal coming from our vibrato
oscillator, we'll choose the k-rate version. The i-rate variables: ia, ib, ic, etc., are the values for the
points. The i-rate variables: idur1, idur2, idur3, etc., set the duration, in seconds, between
segments.

 instr 5
irel = 0.01 ; set vibrato release time
idel1 = p3 * p10 ; calculate initial delay (% of dur)
isus = p3 - (idel1 + irel) ; calculate remaining duration

iamp = ampdb(p4)
iscale = iamp * .333 ; p4=amp
inote = cpspch(p5) ; p5=freq

k3 linseg 0, idel1, p9, isus, p9, irel, 0 ; p6=attack time
k2 oscil k3, p8, 1 ; p7=release time
k1 linen iscale, p6, p3, p7 ; p8=vib rate

a3 oscil k1, inote*.995+k2, 1 ; p9=vib depth
a2 oscil k1, inote*1.005+k2, 1 ; p10=vib delay (0-1)
a1 oscil k1, inote+k2, 1

 out a1+a2+a3
 endin

toot05.orc

f1 0 4096 10 1 ; sine wave

;ins strt dur amp freq atk rel vibrt vbdpt vbdel
i5 0 3 86 10.00 0.1 0.7 7 6 .4

An Instrument Design TOOTorial http://www.csounds.com/toots/

11 of 40 04.11.13 16:31

i5 4 3 86 10.02 1 0.2 6 6 .4
i5 8 4 86 10.04 2 1 5 6 .4

toot05.sco

An Instrument Design TOOTorial http://www.csounds.com/toots/

12 of 40 04.11.13 16:31

Figure 5 Block diagram of instr 5.

An Instrument Design TOOTorial http://www.csounds.com/toots/

13 of 40 04.11.13 16:31

Toot 6: GENs

The first character in a score statement is an opcode, determining an action request; the remaining
data consists of numeric parameter fields (p-fields) to be used by that action. So far we have been
dealing with two different opcodes in our score: f and i. i statements, or note statements, invoke
the p1 instrument at time p2 and turn it off after p3 seconds; all remaining p-fields are passed to
the instrument.

On the other hand, f statements, or lines with an opcode of f, invoke function-drawing
subroutines called GENS. In Csound there are currently twenty-three GEN routines which fill
wavetables in a variety of ways. For example, GEN01 transfers data from a soundfile; GEN07
allows you to construct functions from segments of straight lines; and GEN10, which we've been
using in our scores so far, generates composite waveforms made up of a weighted sum of simple
sinusoids. We have named the function “f1,” invoked it at time 0, defined it to contain 512 points,
and instructed GEN10 to fill that wavetable with a single sinusoid whose amplitude is 1. GEN10
can in fact be used to approximate a variety of other waveforms, as illustrated by the following:

f1 0 2048 10 1 ; Sine
f2 0 2048 10 1 0.5 0.3 0.25 0.2 0.167 0.14 0.125 .111 ; Sawtooth
f3 0 2048 10 1 0 0.3 0 0.2 0 0.14 0 .111 ; Square
f4 0 2048 10 1 1 1 1 0.7 0.5 0.3 0.1 ; Pulse

For the opcode f, the first four p-fields are interpreted as follows:

p1 - table number - In the orchestra, you reference this table by its number.
p2 - creation time - The time at which the function is generated.
p3 - table size - Number of points in table - must be a power of 2, or that plus 1.
p4 - generating subroutine - Which of the 17 GENS will you employ.
p5 - meaning determined by the particular GEN subroutine.

In the instrument and score below, we have added three additional functions to the score, and

An Instrument Design TOOTorial http://www.csounds.com/toots/

14 of 40 04.11.13 16:31

modified the orchestra so that the instrument can call them via p11.

 instr 6
ifunc = p11 ; select the basic waveform
irel = 0.01 ; set vibrato release time
idel1 = p3 * p10 ; calculate initial delay (% of dur)
isus = p3 - (idel1 + irel) ; calculate remaining duration

iamp = ampdb(p4)
iscale = iamp * .333 ; p4=amp
inote = cpspch(p5) ; p5=freq

k3 linseg 0, idel1, p9, isus, p9, irel, 0 ; p6=attack time
k2 oscil k3, p8, 1 ; p7=release time
k1 linen iscale, p6, p3, p7 ; p8=vib rate

a3 oscil k1, inote*.999+k2, ifunc ; p9=vib depth
a2 oscil k1, inote*1.001+k2, ifunc ; p10=vib delay (0-1)
a1 oscil k1, inote+k2, ifunc

 out a1+a2+a3
 endin

toot06.orc

f1 0 2048 10 1 ; Sine
f2 0 2048 10 1 0.5 0.3 0.25 0.2 0.167 0.14 0.125 .111 ; Sawtooth
f3 0 2048 10 1 0 0.3 0 0.2 0 0.14 0 .111 ; Square
f4 0 2048 10 1 1 1 1 0.7 0.5 0.3 0.1 ; Pulse

;ins strt dur amp frq atk rel vbrt vbdpt vibdl waveform
i6 0 2 86 8.00 .03 .7 6 9 .8 1
i6 3 2 86 8.02 .03 .7 6 9 .8 2
i6 6 2 86 8.04 .03 .7 6 9 .8 3
i6 9 3 86 8.05 .03 .7 6 9 .8

toot06.sco

An Instrument Design TOOTorial http://www.csounds.com/toots/

15 of 40 04.11.13 16:31

Figure 6 Block diagram of instr 6.

An Instrument Design TOOTorial http://www.csounds.com/toots/

16 of 40 04.11.13 16:31

Toot 7: Crossfade

Now we will add the ability to do a linear crossfade between any two of our four basic
waveforms. We will employ our delayed vibrato scheme to regulate the speed of the crossfade.

 instr 7
ifunc1 = p11 ; initial waveform
ifunc2 = p12 ; crossfade waveform

ifad1 = p3 * p13 ; calculate initial fade (% of dur)
ifad2 = p3 - ifad1 ; calculate remaining duration

irel = .01 ; set vibrato release time
idel1 = p3 * p10 ; calculate initial delay (% of dur)
isus = p3 - (idel1 + irel) ; calculate remaining duration

iamp = ampdb(p4)
iscale = iamp * .166 ; p4=amp
inote = cpspch(p5) ; p5=freq

k3 linseg 0, idel1, p9, isus, p9, irel, 0 ; p6=attack time
k2 oscil k3, p8, 1 ; p7=release time
k1 linen iscale, p6, p3, p7 ; p8=vib rate
a6 oscil k1, inote*.998+k2, ifunc2 ; p9=vib depth
a5 oscil k1, inote*1.002+k2, ifunc2 ; p10=vib delay (0-1)
a4 oscil k1, inote+k2, ifunc2 ; p11=initial wave
a3 oscil k1, inote*.997+k2, ifunc1 ; p12=cross wave
a2 oscil k1, inote*1.003+k2, ifunc1 ; p13=fade time
a1 oscil k1, inote+k2, ifunc1

kfade linseg 1, ifad1, 0, ifad2, 1
afunc1 = kfade * (a1+a2+a3)
afunc2 = (1 - kfade) * (a4+a5+a6)

 out afunc1 + afunc2
 endin

toot07.orc

f1 0 2048 10 1 ; Sine

An Instrument Design TOOTorial http://www.csounds.com/toots/

17 of 40 04.11.13 16:31

f2 0 2048 10 1 0.5 0.3 0.25 0.2 0.167 0.14 0.125 .111 ; Sawtooth
f3 0 2048 10 1 0 0.3 0 0.2 0 0.14 0 .111 ; Square
f4 0 2048 10 1 1 1 1 0.7 0.5 0.3 0.1 ; Pulse

;in st dur amp frq atk rel vbrt vbdp vbdl stw ndw crstm
i7 0 5 96 8.07 .03 .1 5 6 .99 1 2 .1
i7 6 5 96 8.09 .03 .1 5 6 .99 1 3 .1
i7 12 8 96 8.07 .03 .1 5 6 .99 1 4 .

toot07.sco

An Instrument Design TOOTorial http://www.csounds.com/toots/

18 of 40 04.11.13 16:31

An Instrument Design TOOTorial http://www.csounds.com/toots/

19 of 40 04.11.13 16:31

Figure 7 Block diagram of instr 7.

Toot 8: Soundin

Now instead of continuing to enhance the same instrument, we will design a totally different one.
In it we'll read a soundfile into the orchestra, apply an amplitude envelope to it, and add some
reverb. To do this we will employ Csound's soundin and reverb generators. The first is described
as:

a1 soundin ifilcod[, iskiptime[, iformat]]

soundin derives its signal from a pre-existing file. ifilcod is either the filename in double
quotes, or an integer suffix (.n) to the name “soundin”. Thus the file soundin.5 could be referenced
either by the quoted name or by the integer 5. To read from 500ms into this file we might say:

a1 soundin “soundin.5”, .5

The Csound reverb generator is actually composed of four parallel comb filters plus two
alpass filters in series. Although we could design a variant of our own using these same
primitives, the preset reverb is convenient, and simulates a natural room response via internal
parameter values. Only two arguments are required the input (asig) and the reverb time (krvt)

ar reverb asig, krvt

The soundfile instrument with artificial envelope and a reverb (included directly) is as follows:

 instr 8
idur = p3
iamp = p4
iskiptime = p5
iattack = p6
irelease = p7

An Instrument Design TOOTorial http://www.csounds.com/toots/

20 of 40 04.11.13 16:31

irvbtime = p8
irvbgain = p9

kamp linen iamp, iattack, idur, irelease
asig soundin "hellorcb.aif", iskiptime
arampsig = kamp * asig
aeffect reverb asig, irvbtime
arvbretrn = aeffect * irvbgain
 out arampsig + arvbretrn
 endin

toot08.orc

;ins strt dur amp skip atk rel rvbt rvbgain
i8 0 2.28 .3 0 .03 .1 1.5 .3
i8 4 1.6 .3 1.6 .1 .1 1.1 .4
i8 5.5 2.28 .3 0 .5 .1 2.1 .2
i8 6.5 2.28 .4 0 .01 .1 1.1 .1
i8 8 2.28 .5 0.1 .01 .1 0.1 .1

toot08.sco

An Instrument Design TOOTorial http://www.csounds.com/toots/

21 of 40 04.11.13 16:31

Figure 8 Block diagram of instr 8.

Toot 9: Global Stereo Reverb

In the previous example you may have noticed the soundin source being “cut off” at ends of notes,
because the reverb was insidethe instrument itself. It is better to create a companion instrument, a
global reverb instrument, to which the source signal can be sent. Let's also make this stereo.

Variables are named cells which store numbers. In Csound, they can be either local or global,
are available continuously, and can be updated at one of four rates - setup, i-rate, k-rate, or a-rate.

Local variables (which begin with the letters p, i, k, or a) are private to a particular
instrument. They cannot be read from, or written to, by any other instrument.

Global Variables are cells which are accessible by all instruments. Three of the same four
variable types are supported (i, k, and a), but these letters are preceded by the letter “g” to identify

An Instrument Design TOOTorial http://www.csounds.com/toots/

22 of 40 04.11.13 16:31

them as “global.” Global variables are used for “broadcasting” general values, for communicating
between instruments, and for sending sound from one instrument to another.

The reverb instr 99 below receives input from instr 9 via the global a-rate variable garvbsig.
Since instr 9 adds into this global, several copies of instr 9 can do this without losing any data.
The addition requires garvbsig to be cleared before each k-rate pass through any active
instruments. This is accomplished first with an init statement in the orchestra header, giving the
reverb instrument a higher number than any other (instruments are performed in numerical order),
and then clearing garvbsig within instr 99 once its data has been placed into the reverb.

 instr 9
idur = p3
iamp = p4
iskiptime = p5
iattack = p6
irelease = p7
ibalance = p8 ; 1 = left, .5 = center, 0 = right
irvbgain = p9

kamp linen iamp, iattack, idur, irelease
asig soundin "hellorcb.aif", iskiptime
arampsig = kamp * asig
 outs arampsig * ibalance, arampsig * (1 - ibalance)
garvbsig = garvbsig + arampsig * irvbgain
 endin

 instr 99
irvbtime = p4
asig reverb garvbsig, irvbtime ; put global sig into reverb
 outs asig, asig
garvbsig = 0 ; then clear it
 endin

toot09.orc

;ins strt dur rvbtime
i99 0 10 2.2

An Instrument Design TOOTorial http://www.csounds.com/toots/

23 of 40 04.11.13 16:31

;ins strt dur amp skip atk rel blnce(0-1) rvbsend
i9 0 1.2 .5 0 .02 .1 1 .2
i9 2 1.4 .5 0 .03 .1 0 .3
i9 3.5 2.28 .5 0 .9 .1 .5 .1
i9 4.5 2.28 .5 0 1.2 .1 0 .2
i9 5 2.28 .5 0 .2 .1 1 .3
i9 9 2.28 .7 0 .1 .1 .5 .03

toot09.sco

Figure 9 Block diagram of instr 9.

Toot 10: Filtered Noise

An Instrument Design TOOTorial http://www.csounds.com/toots/

24 of 40 04.11.13 16:31

The following instrument uses the Csound rand unit to produce noise, and a reson unit to filter it.
The bandwidth of reson will be set at i-time, but its center frequency will be swept via a line unit
through a wide range of frequencies during each note. We add reverb as in Toot 9.

 instr 10
iattack = .01
irelease = .2
iwhite = 22050
idur = p3
iamp = p4
iswpstart = p5
isweepend = p6
ibndwidth = p7
ibalance = p8 ; 1 = left, .5 = center, 0 = right
irvbgain = p9
kamp linen iamp, iattack, idur, irelease
ksweep line iswpstart, idur, isweepend
asig rand iwhite
afilt reson asig, ksweep, ibndwidth
arampsig = kamp * afilt
 outs arampsig * ibalance, arampsig * (1 - ibalance)
garvbsig = garvbsig + arampsig * p9
 endin

 instr 100
irvbtime = p4
asig reverb garvbsig, irvbtime
 outs asig, asig
garvbsig = 0
 endin

;ins strt dur rvbtime
i100 0 15 1.1
i100 15 10 5

;ins strt dur amp stsw ndsw bdw bal(0-1) rvsnd
i10 0 2 .01 5000 500 20 .15 .1
i10 3 1 .01 1500 5000 30 .95 .1
i10 5 2 .01 850 1100 40 .45 .1
i10 8 2 .01 1100 8000 50 .05 .1
i10 8 .5 .01 5000 1000 30 .35 .2
i10 9 .5 .01 1000 8000 40 .75 .1

An Instrument Design TOOTorial http://www.csounds.com/toots/

25 of 40 04.11.13 16:31

i10 11 .5 .01 500 2100 50 .14 .2
i10 12 .5 .01 2100 1220 75 .96 .1
i10 13 .5 .01 1700 3500 100 .45 .2
i10 15 5 .005 8000 800 60 .85 .1

Figure 10 Block diagram of instr 10.

Toot 11: Carry, Tempo & Sort

An Instrument Design TOOTorial http://www.csounds.com/toots/

26 of 40 04.11.13 16:31

We now use a plucked string instrument to explore some of Csound's score preprocessing
capabilities. Since the focus here is on the score, the instrument is presented without explanation.

 instr 11
asig1 pluck ampdb(p4)/2, p5, p5, 0, 1
asig2 pluck ampdb(p4)/2, p5*1.003, p5*1.003, 0, 1
 out asig1 + asig2
 endin

The score can be divided into time-ordered sections by the s statement. Prior to performance,
each section is processed by three routines: Carry, Tempo, and Sort. The score toot11.sco has
multiple sections containing each of the examples below, in both of the forms listed.

Carry

The carry feature allows a dot (".") in a p-field to indicate that the value is the same as above,
provided the instrument is the same. Thus the following two examples are identical:

;ins start dur amp freq | ; ins start dur amp freq
 i11 0 1 90 200 | i11 0 1 90 200
 i11 1 . . 300 | i11 1 1 90 300
 i11 2 . . 400 | i11 2 1 90 400

A special form of the carry feature applies to p2 only. A "+" in p2 will be given the value of
p2+p3 from the previous i statement. The "+" can also be carried with a dot:

;ins start dur amp freq | ; ins start dur amp freq
 i11 0 1 90 200 | i11 0 1 90 200
 i. + . . 300 | i11 1 1 90 300
 i. . . . 500 | i11 2 1 90 500

The carrying dot may be omitted when there are no more explicit pfields on that line:

Ramping

An Instrument Design TOOTorial http://www.csounds.com/toots/

27 of 40 04.11.13 16:31

A variant of the carry feature is ramping, which substitutes a sequence of linearly interpolated
values for a ramp symbol (“<”) spanning any two values of a pfield. Ramps work only on
consecutive calls to the same instrument, and they cannot be applied to the first three p-fields.

;ins start dur amp freq | ; ins start dur amp freq
 i11 0 1 90 200 | i11 0 1 90 200
 i . + . < < | i11 1 1 85 300
 i . . . < 400 | i11 2 1 80 400
 i . . . < < | i11 3 1 75 300
 i . . 4 70 200 | i11 4 4 70 200

Tempo

The unit of time in a Csound score is the beat - normally one beat per second. This can be
modified by a tempo statement which enables the score to be arbitrarily time-warped. Beats are
converted to their equivalent in seconds during score pre-processing of each Section. In the
absence of a Tempo statement in any Section, the following tempo statement is inserted:

t 0 60

It means that at beat 0 the tempo of the Csound beat is 60 (1 beat per second). To hear the
Section at twice the speed, we have two options: 1) cut all p2 and p3 in half and adjust the start
times, or 2) insert the statement t 0 120 within the Section.

The tempo statement can also be used to move between different tempi during the score, thus
enabling ritardandi and accelerandi. Changes are linear by beat size. The following statement will
cause the score to begin at tempo 120, slow to tempo 80 by beat 4, then accelerate to 220 by beat
7:

t 0 120 4 80 7 220

The following will produce identical sound files:

An Instrument Design TOOTorial http://www.csounds.com/toots/

28 of 40 04.11.13 16:31

 | t 0 120 ; Double-time via Tempo
;ins start dur amp freq | ; ins start dur amp freq
 i11 0 .5 90 200 | i11 0 1 90 200
 i . + . < < | i . + . < <
 i . . . < 400 | i . . . < 400
 i . . . < < | i . . . < <
 i . . 2 70 200 | i . . 4 70 200

The following includes an accelerando and ritard. It should be noted, however, that the
ramping feature is applied after time-warping, and is thus proportional to elapsed chronological
time. While this is perfect for amplitude ramps, frequency ramps will not result in harmonically
related pitches during tempo changes. The frequencies needed here are thus made explicit.

t 0 60 4 400 8 60 ; Time-warping via Tempo

;ins start dur amp freq
 i11 0 1 70 200
 i . + . < 500
 i . . . 90 800
 i . . . < 500
 i . . . 70 200
 i . . . 90 1000
 i . . . < 600
 i . . . 70 200
 i . . 8 90 100

Three additional score features are extremely useful in Csound. The s statement was used
above to divide a score into Sections for individual pre-processing. Since each s statement
establishes a new relative time of 0, and all actions within a section are relative to that, it is
convenient to develop the score one section at a time, then link the sections into a whole later.

Suppose we wish to combine the six above examples (call them toot11a - toot11f) into one
score. One way is to start with toot11a.sco, calculate its total duration and add that value to every
starting time of toot11b.sco, then add the composite duration to the start times of toot11c.sco, etc.
Alternatively, we could insert an s statement between each of the sections and run the entire score.
The file toot11.sco, which contains a sequence of all of the above score examples, did just that.

The f0 statement, which creates an "action time" with no associated action, is useful in

An Instrument Design TOOTorial http://www.csounds.com/toots/

29 of 40 04.11.13 16:31

extending the duration of a section. Two seconds of silence are added to the first two sections
below.

Sort

During preprocessing of a score section, all action-time statements are sorted into chronological
order by p2 value. This means that notes can be entered in any order, that you can merge files, or
work on instruments as temporarily separate sections, then have them sorted automatically when
you run Csound on the file.

The file below contains excerpts from this section of the rehearsal chapter and from instr6 of
the tutorial, and combines them as follows:

; ins start dur amp freq ; toot11h.sco
 i11 0 1 70 100 ; Score Sorting
 i . + . < <
 i . . . < <
 i . . . 90 800
 i . . . < <
 i . . . < <
 i . . . 70 100
 i . . . 90 1000
 i . . . < <
 i . . . < <
 i . . . < <
 i . . . 70 <
 i . . 8 90 50

 f1 0 2048 10 1 ; Sine
 f2 0 2048 10 1 .5 .3 .25 .2 .167 .14 .125 .111 ; Sawtooth
 f3 0 2048 10 1 0 .3 0 .2 0 .14 0 .111 ; Square
 f4 0 2048 10 1 1 1 1 .7 .5 .3 .1 ; Pulse

; ins strt dur amp frq atk rel vibr vibdpth vibdel waveform
 i6 0 2 86 9.00 .03 .1 6 5 .4 1
 i6 2 2 86 9.02 .03 .1 6 5 .4 2
 i6 4 2 86 9.04 .03 .1 6 5 .4 3
 i6 6 4 86 9.05 .05 .1 6 5 .4 4

An Instrument Design TOOTorial http://www.csounds.com/toots/

30 of 40 04.11.13 16:31

Figure 11 Block diagram of instr 11.

Toot 12: Tables & Labels

This is by far our most complex instrument. In it we have designed the ability to store pitches in a
table, and then index them in three different ways: 1) directly, 2) via an lfo, and 3) randomly. As a
means of switching between these three methods, we will use Csound's program control
statements and logical and conditional operations.

 instr 12
 iseed = p8
 iamp = ampdb(p4)
 kdirect = p5
 imeth = p6
 ilforate = p7 ; rate for lfo and random index

An Instrument Design TOOTorial http://www.csounds.com/toots/

31 of 40 04.11.13 16:31

 itab = 2
 itabsize = 8

if (imeth == 1) igoto direct
if (imeth == 2) kgoto lfo
if (imeth == 3) kgoto random

direct: kpitch table kdirect, itab ; index f2 via p5
 kgoto contin

lfo: kindex phasor ilforate
 kpitch table kindex * itabsize, itab
 kgoto contin

random: kindex randh int(7), ilforate, iseed
 kpitch table abs(kindex), itab

contin: kamp linseg 0, p3 * .1, iamp, p3 * .9, 0 ; amp envelope
 asig oscil kamp, cpspch(kpitch), 1 ; audio oscillator
 out asig
 endin

f1 0 4096 10 1 ; Sine
f2 0 8 -2 8.00 8.02 8.04 8.05 8.07 8.09 8.11 9.00 ; cpspch C major scale

; method 1 - direct index of table values
; ins strt dur amp index method lforate rndseed
 i12 0 .5 86 7 1 0 0
 i12 .5 .5 86 6 1 0
 i12 1 .5 86 5 1 0
 i12 1.5 .5 86 4 1 0
 i12 2 .5 86 3 1 0
 i12 2.5 .5 86 2 1 0
 i12 3 .5 86 1 1 0
 i12 3.5 .5 86 0 1 0
 i12 4 .5 86 0 1 0
 i12 4.5 .5 86 2 1 0
 i12 5 .5 86 4 1 0
 i12 5.5 2.5 86 7 1 0
 f0 10
s
; method 2 - lfo index of table values
; ins strt dur amp index method lforate rndseed
 i12 0 2 86 0 2 1 0
 i12 3 2 86 0 2 2

An Instrument Design TOOTorial http://www.csounds.com/toots/

32 of 40 04.11.13 16:31

 i12 6 2 86 0 2 4
 i12 9 2 86 0 2 8
 i12 12 2 86 0 2 16
 f0 16
s
; method 3 - random index of table values
; ins strt dur amp index method lforate rndseed
 i12 0 2 86 0 3 2 .1
 i12 3 2 86 0 3 3 .2
 i12 6 2 86 0 3 4 .3
 i12 9 2 86 0 3 7 .4
 i12 12 2 86 0 3 11 .5
 i12 15 2 86 0 3 18 .6
 i12 18 2 86 0 3 29 .7
 i12 21 2 86 0 3 47 .8
 i12 24 2 86 0 3 76 .9
 i12 27 2 86 0 3 123 .9
 i12 30 5 86 0 3 199 .

An Instrument Design TOOTorial http://www.csounds.com/toots/

33 of 40 04.11.13 16:31

An Instrument Design TOOTorial http://www.csounds.com/toots/

34 of 40 04.11.13 16:31

Figure 12 Block diagram of instr 12.

Toot 13: Spectral Fusion

For our final instrument, we will employ three unique synthesis methods: Physical Modeling,
Formant-Wave Synthesis, and Non-linear Distortion. Three of Csound's more powerful unit
generators - pluck, fof, and foscil, make this complex task a fairly simple one. The Reference
Manual describes these as follows:

ar pluck kamp, kcps, icps, ifn, imeth\\
 [, iparm1, iparm2]

pluck simulates the sound of naturally decaying plucked strings by filling a cyclic decay
buffer with noise and then smoothing it over time according to one of several methods. The unit is
based on the Karplus-Strong algorithm.

ar fof xamp, xfund, xform, koct, kband, kris,\\
 kdur, kdec, iolaps, ifna, ifnb, itotdur\\
 [, iphs[, ifmode]]

fof simulates the sound of the male voice by producing a set of harmonically related partials (a
formant region) whose spectral envelope can be controlled over time. It is a special form of
granular synthesis, based on the CHANT program from IRCAM by Xavier Rodet et al.

ar foscil xamp, kcps, kcar, kmod, kndx, ifn\\
 [, iphs]

foscil is a composite unit which banks two oscillators in a simple FM configuration, wherein
the audio-rate output of one (the “modulator”) is used to modulate the frequency input of another
(the “carrier.”)

The plan for our instrument is to have the plucked string attack dissolve into an FM sustain

An Instrument Design TOOTorial http://www.csounds.com/toots/

35 of 40 04.11.13 16:31

which transforms into a vocal release. The orchestra and score are as follows:

 instr 13
iamp = ampdb(p4) / 2 ;amp scaled for two sources
ipluckamp = p6 ;p6: % of total amplitude, 1=dB amp as in p4
ipluckdur = p7*p3 ;p7: % of total duration, 1=entire note duration
ipluckoff = p3 - ipluckdur

ifmamp = p8 ;p8: % of total amplitude, 1=dB amp as in p4
ifmrise = p9*p3 ;p9: % of total duration, 1=entire note duration
ifmdec = p10*p3 ;p10: % of total duration
ifmoff = p3 - (ifmrise + ifmdec)
index = p11
ivibdepth = p12
ivibrate = p13
ifrmntamp = p14 ;p14: % of total amplitude, 1=dB amp as in p4
ifrmntris = p15*p3 ;p15: % of total duration, 1=entire note duration
ifrmntdec = p3 - ifrmntris

kpluck linseg ipluckamp, ipluckdur, 0, ipluckoff, 0
apluck1 pluck iamp, p5, p5, 0, 1
apluck2 pluck iamp, p5*1.003, p5*1.003, 0, 1
apluck = kpluck * (apluck1+apluck2)

kfm linseg 0, ifmrise, ifmamp, ifmdec, 0, ifmoff, 0
kndx = kfm * index
afm1 foscil iamp, p5, 1, 2, kndx, 1
afm2 foscil iamp, p5*1.003, 1.003, 2.003, kndx, 1
afm = kfm * (afm1+afm2)

kformant linseg 0, ifrmntris, ifrmntamp, ifrmntdec, 0
kvib oscil ivibdepth, ivibrate, 1
afrmt1 fof iamp, p5+kvib, 650, 0, 40, .003,.017,.007,4,1,2,p3
afrmt2 fof iamp, (p5*1.001)+kvib*.009, 650, 0, 40, .003,.017,.007,10,1,2,p3
aformant = kformant * (afrmt1+afrmt2)

 out apluck + afm + aformant
 endin

f1 0 8192 10 1 ; Sine
f2 0 2048 19 0.5 1 270 1 ; Sine quadrant rise

; pluckamp = p6 - % of total amplitude, 1=dB amp as specified in p4
; pluckdur = p7*p3 - % of total duration, 1=entire duration of note

An Instrument Design TOOTorial http://www.csounds.com/toots/

36 of 40 04.11.13 16:31

; fmamp = p8 - % of total amplitude, 1=dB amp as specified in p4
; fmrise = p9*p3 - % of total duration, 1=entire duration of note
; fmdec = p10*p3 - % of total duration
; index = p11 - number of significant sidebands: p11 + 2
; vibdepth = p12
; vibrate = p13
; formantamp = p14 - % of total amplitude, 1=dB amp as specified in p4
; formantrise = p15*p3 - % of total duration, 1=entire duration of note

 f0 01
 f0 02
 f0 03
 f0 04
 f0 06
 f0 07
 f0 08
 f0 09
 f0 10
 f0 11
 f0 12
 f0 14
 f0 15
 f0 16
 f0 17
 f0 18
 f0 19
 f0 20
 f0 21
 f0 22
 f0 23
 f0 24
 f0 25

;ins st dur amp frq plkmp plkdr fmmp fmrs fmdc indx vbdp vbrt frmp fris
i13 0 5 80 200 .8 .3 .7 .2 .35 8 1 5 3 .5
i13 5 8 80 100 . .4 .7 .35 .35 7 1 6 3 .7
i13 13 13 80 50 . .3 .7 .2 .4 6 1 4 3 .6

An Instrument Design TOOTorial http://www.csounds.com/toots/

37 of 40 04.11.13 16:31

An Instrument Design TOOTorial http://www.csounds.com/toots/

38 of 40 04.11.13 16:31

Figure 13 Block diagram of instr 13.

When Things Sound Wrong

When you design your own Csound instruments you may occasionally be surprised by the results.
There will be times when you've computed a file for hours and your playback is just silence, while
at other times you may get error messages which prevent the score from running, or you may hang
the computer and nothing happens at all.

In general, Csound has a comprehensive error-checking facility that reports to your console at
various stages of your run: at score sorting, orchestra translation, initializing each call of every
instrument, and during performance. However, if your error was syntactically permissable, or it
generated only a warning message, Csound could faithfully give you results you don't expect.
Here is a list of the things you might check in your score and orchestra files:

You typed the letter “l” instead of the number “1.”
You forgot to precede your comment with a semi-colon.
You forgot an opcode or a required parameter.
Your amplitudes are not loud enough, or they are too loud.
Your frequencies are not in the audio range - 20Hz to 20kHz.
You placed the value of one parameter in the p-field of another.
You left out some crucial information like a function definition.
You didn't meet the GEN specifications.

Suggestions for Further Study

Csound is such a powerful tool that we have touched on only a few of its many features and uses.
You are encouraged to take apart the instruments in the tutorials, rebuild them, modify them, and

An Instrument Design TOOTorial http://www.csounds.com/toots/

39 of 40 04.11.13 16:31

integrate the features of one into the design of another. To understand their capabilities you should
compose short etudes with each. You may be surprised to find yourself merging these little studies
into the fabric of your first Csound compositions.

There are many sources of information on Csound and software synthesis. The ultimate
sourcebook for Csound is The Csound Book: Perspectives in Software Synthesis, Sound Design,
Signal Processing, and Programming, edited by Richard Boulanger, and published by MIT Press.

Nothing will increase your understanding more than actually making music with Csound. The
best way to discover the full capability of these tools is to create your own music with them. As
you negotiate the new and uncharted terrain you will make many discoveries. It is my hope that
through Csound you discover as much about music as I have, and that this experience brings you
great personal satisfaction and joy.

Richard Boulanger
Boston, Massachusetts USA
March, 1991

An Instrument Design TOOTorial http://www.csounds.com/toots/

40 of 40 04.11.13 16:31

